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Due to their desirable broadband noise attenuation characteristics, expansion chambers
are widely used in the ducting systems for pulsating flows, including the breathing systems
of engines and reciprocating turbomachinery. The present study investigates in detail the
effect of the length on the acoustic attenuation performance of concentric expansion
chambers. Three approaches are employed to determine the transmission loss: (1) a
two-dimensional, axisymmetric analytical solution; (2) a three-dimensional computational
solution based on the boundary element method; and (3) experiments on an extended
impedance tube set-up with nine expansion chambers fabricated with fixed inlet and outlet
ducts, fixed chamber diameters and varying chamber length to diameter ratios from
l/d=0·2 to 3·5. The results from all three approaches are shown to agree well. The effect
of multi-dimensional propagation is discussed in comparison with the classical treatment
for the breakdown of planar waves. The study also provides a simple relation for the
number of repeating attenuation domes prior to the domination of higher order modes in
terms of the l/d ratio of the expansion chamber.
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1. INTRODUCTION

The desirable broad (and repeating) band attenuation of expansion chambers has led to
their extensive use as silencers in pulsating flows [1]; including induction and exhaust
systems of internal combustion engines, ducts connected to reciprocating pumps and
compressors, and fans. For circular concentric chambers, the repeating dome behavior of
transmission loss breaks down at a frequency below the onset of the first radial mode.
While this breakdown frequency is usually assumed to be dependent only on the radius
of the chamber, Craggs [2] showed, using finite element models, that changing the length
of the chamber also affected this frequency, with shorter lengths terminating the repeating
domes at lower frequencies. El-Sharkawy and Nayfeh [3] later verified Craggs’ findings
using a three-dimensional analytical solution for concentric chambers. Their analytical
results also correlated well with experimental measurements of noise reduction for
chambers of different expansion ratios and length to diameter ratios, l/d, ranging from
0·3 to 0·9. Eriksson et al. [4] investigated the finite length effects on the transmission loss
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of both symmetric (concentric) and asymmetric expansion chambers. This work illustrates
that a very short-length concentric expansion chamber no longer exhibits the broadband
behavior, and acts rather like a resonator. Ih and Lee [5] developed a three-dimensional
analytical model for circular chambers that incorporated mean flow and allowed for offset
inlet and outlet locations. Their results matched experimental transmission loss values for
l/d ratios ranging from 0·33 to 1·35. They also gave an expression for the l/d ratio
where the acoustically short chamber resonance appears. Finally, based on finite
element predictions, Sahasrabudhe et al. [6] suggested an empirical relation for the
approximate number of repeating one-dimensional domes in terms of the l/d ratio of the
chamber.

The objective of the present study is to examine in more detail the effect of the circular
concentric expansion chamber geometry on the transmission loss characteristics for
one-dimensional versus multi-dimensional propagation. Transmission loss results obtained
from two-dimensional acoustical theory and a three-dimensional boundary element method
are compared with experimental results for nine fabricated expansion chambers with l/d
ratios ranging from 0·205 to 3·525. The upper limit represents the outer dimensions of a
production vehicle exhaust muffler, and the lower limit ensures a narrow-band peak
behavior. The seven configurations in-between are chosen such that each one exhibits a
different number (one through seven) of attenuation domes. The boundary element
method is also used to predict the pressure field inside the chambers at different frequencies
to assess the extent of non-planar propagation prior to the onset of non-planar modes.
Finally, an analytical expression is developed and experimentally verified to relate the
number of repeating one-dimensional transmission loss domes to the l/d ratio of the
chamber.

The study consists of six sections: following this Introduction, section 2 develops and
discusses the two-dimensional analytical approach. Sections 3 and 4 provide brief
descriptions of the direct boundary element method and the experimental apparatus,
respectively. Section 5 compares the results obtained from these three methods, followed
by some concluding final remarks in section 6. A brief Appendix is then included on the
classical solution of the multi-dimensional wave equation.

2. ANALYTICAL APPROACH

For the concentric configuration of Figure 1 with equal inlet and outlet diameters, d1,
a two-dimensional analytical expression can be obtained for the transmission loss by
matching the pressure and velocity at the expansion and the contraction [3, 7, 8]. From

Figure 1. The expansion chamber geometry.
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Appendix A, the pressure field for waves travelling in a circular pipe of radius ri is given
as (a list of nomenclature is given in Appendix B)

PA =A0 ej(vt− kz) + s
a

n=1

AnJ0(gi,0nr) ej(vt+ ki ,0nz) (1)

for a wave A travelling in the positive z direction, and

PB =B0 ej(vt+ kz) + s
a

n=1

BnJ0(gi,0nr) ej(vt− ki ,0nz) (2)

for a wave B travelling in the negative z direction, where n designates the radial mode
number, An the pressure coefficient for each mode, v the angular frequency, k the planar
wave number, J0 the Bessel function of the first kind of order zero, and ki,0n and gi,0n are
the axial and radial wavenumbers given by equations (A3) and (A4). Examining equation
(A3) for any radial mode n readily shows that ki,0n will be imaginary when

k=
v

c
Q a0n

ri
or fQ c

2p 0a0n

ri 1. (3)

The sign difference between the planar and radial modes in the exponential terms of
equations (1) and (2) ensures that for a wave travelling in the positive direction, the
magnitude of all modes, for which equation (3) holds, will decrease exponentially to zero
with increasing distance, whereas for negative travelling waves the magnitude must
increase. The velocity of waves A and B are obtained from the linearized momentum
equation,

r
1Uz

1t
=−

1P
1z

, (4)

as

UzA =
1
rc

A0 ej(vt− kz) −
1

rv
s
a

n=1

Anki,0nJ0(gi,0nr) ej(vt+ ki ,0nz) (5)

and

UzB =−
1
rc

B0 ej(vt+ kz) +
1

rv
s
a

n=1

Bnki,0nJ0(gi,0nr) ej(vt− ki ,0nz) (6)

At the expansion, the boundary conditions reveal, for the pressure,

(PA +PB)=z=0 = (PC +PD)=z=0, 0E rE r1 (7)

and, for the velocity,

(UzA +UzB)=z=0 = (UzC +UzD)=z=0, 0E rE r1, (8)

(UzC +UzD)=z=0 =0, r1 E rE r2. (9)

In these boundary conditions, equations (1) and (5) will be used for waves A, C and E
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Figure 2. The experimental set-up.

travelling in the positive z direction, and equations (2) and (6) are used for waves B, D
and F travelling in the negative direction. For the expansion chamber in Figure 1, the
dimensions of the inlet pipe are assumed such that the incoming wave A is planar, and
its magnitude, A0, is chosen to be unity for convenience. An anechoic termination is
imposed at the exit of the chamber by setting the reflected wave F to zero.

Following the work of Miles [7], the pressure boundary condition at the expansion can
be evaluated by multiplying both sides of equation (7) by r dr for s=0 and integrating
from r=0 to r= r1 to give

B00r2
1

21−C00r2
1

21− s
a

n=1

Cn$r1J1(g2,0nr1)
g2,0n %−D00r2

1

21− s
a

n=1

Dn$r1J1(g2,0nr1)
g2,0n %=−0r2

1

21 .

(10)

For s=1, 2, , . . . , a, multiplying both sides of equation (7) by the orthogonal Bessel
function term J0(g1,0sr)r dr and integrating from r=0 to r= r1 gives

Bs$r2
1

2
J2

0(g1,0sr1)%− s
a

n=1

Cn$g2,0nr1J1(g2,0nr1)J0(g1,0sr1)
g2

2,0n − g2
1,0s %

− s
a

n=1

Dn$g2,0nr1J1(g2,0nr1)J0(g1,0sr1)
g2

2,0n − g2
1,0s %=0 (11)

For the two velocity boundary conditions, multiply equations (8) and (9) by r dr and
integrate equation (8) from r=0 to r= r1 and equation (9) from r= r1 to r= r2. Adding
these two integral equations and simplifying produces, for s=0,

−B0r2
1 −C0r2

2 +D0r2
2 =−r2

1. (12)

Similarly, for s=1, 2, , . . . , a, multiplying equations (8) and (9) by J0(g2,0sr)r dr and
integrating over the same limits yields
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T 1

Expansion chamber geometry (d1 =4·859 cm, d2 =15·318 cm;
m=9·938)

Geometry l (cm) l/d2

1 3·139 0·205
2 9·371 0·612
3 15·689 1·024
4 21·981 1·435
5 28·230 1·843
6 34·552 2·256
7 40·838 2·666
8 47·113 3·076
9 54·000 3·525

−kB0$r1J1(g2,0sr1)
g2,0s %+ s

a

n=1

Bnk1,0n$g2,0sr1J1(g2,0sr1)J0(g1,0nr1)
g2

2,0s − g2
1,0n %

+k2,0sCs$r2
2

2
J2

0(g2,0sr2)%− k2,0sDs$r2
2

2
J2

0(g2,0sr2)%=−k$r1J1(g2,0sr1)
g2,0s %. (13)

The boundary conditions at the contraction require, for the pressure,

(PC +PD)=z= l =(PE +PF)=z'=0, 0E rE r1 (14)

and, for the velocity,

(UzC +UzD)=z= l =(UzE +UzF)=z'=0, 0E rE r1, (15)

Figure 3. A transmission loss comparison between one-dimensional theory and experiment for an expansion
chamber with l/d=3·525: ——, one-dimensional theory; R, experimental.
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Figure 4. A transmission loss comparison between one-dimensional theory and experiment for an expansion
chamber with l/d=0·205: ——, one-dimensional theory; R, experimental.

(UzC +UzD)=z= l =0, r1 E rE r2. (16)

Using the same procedure as for the expansion, equation (14) gives, for s=0,

C00r2
1

21 e−jkl + s
a

n=1

Cn$r1J1(g2,0nr1)
g2,0n % ejk2,0nl +D00r2

1

21 ejkl

+ s
a

n=1

Dn$r1J1(g2,0nr1)
g2,0n % e−jk2,0nl −E00r2

1

21=0 (17)

and, for s=1, 2, . . . , a,

s
a

n=1

Cn$g2,0nr1J1(g2,0nr1)J0(g1,0sr1)
g2

2,0n − g2
1,0s % ejk2,0nl

+ s
a

n=1

Dn$g2,0nr1J1(g2,0nr1)J0(g1,0sr1)
g2

2,0n − g2
1,0s % e−jk2,0nl −Es$r2

1

2
J2

0(g1,0sr1)%=0. (18)

From equations (15) and (16) for s=0,

C0r2
2 e−jkl −D0r2

2 ejkl −E0r2
1 =0 (19)



  

Figure 5. Pressure contours for an expansion chamber with l/d=3·525 for three frequencies of maximum
transmission loss: (a) 160 Hz; (b) 2080 Hz; (c) 2714 Hz.

Figure 6. Pressure contours for an expansion chamber with l/d=3·525 for three frequencies of minimum
transmission loss: (a) 320 Hz; (b) 2240 Hz; (c) 2800 Hz.
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Figure 7. Lines of constant pressure for an expansion chamber with l/d=0·205 before and at resonance: (a)
160 Hz; (b) 1420 Hz.

and, for s=1, 2, . . . , a,

k2,0sCs$r2
2

2
J2

0(g2,0sr2)% ejk2,0sl − k2,0sDs$r2
2

2
J2

0(g2,0sr2)% e−jk2,0sl + kE0$r1J1(g2,0sr1)
g2,0s %

− s
a

n=1

Enk1,0n$g2,0sr1J1(g2,0sr1)J0(g1,0nr1)
g2

2,0s − g2
1,0n %=0. (20)

Equations (10)–(13) and (17)–(20) give a large (theoretically infinite) number of relations
(4s+4) for a large number of unknowns (4n+4). The unknowns are the pressure
coefficients for the incident and reflected waves in the inlet pipe, the chamber, and the
outlet pipe (Bn , Cn , Dn and En , where n=0, 1, . . . , a is the number of radial modes).

Figure 8. Lines of constant pressure for expansion chambers with (a) l/d=0·205 and (b) l/d=3·525 at 160 Hz
(shown with equal contour strengths).
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Figure 9. Lines of constant pressure for expansion chambers with (a) l/d=0·205 and (b) l/d=3·525 at
1420 Hz (shown with equal contour strengths).

Fortunately, higher modes have a diminishing effect on the solution, and s and n can
be truncated to p terms resulting in 4p+4 equations with 4p+4 unknowns. The number
of terms, p, needed for a converged solution depends both on the magnitude of the area
transition and the length of the chamber. El-Sharkawy and Nayfeh [3] reported for their
configurations that five terms were sufficient to converge to 0.1% accuracy. For the
geometries and frequencies investigated here, five terms were found to be sufficient for the
long chambers, but in excess of 15 terms were needed for very short chambers due to the
high radial dependence. Once equations (10)–(13) and (17)–(20) are solved, the
transmission loss is determined in the center of the tube by

TL=−20 log10 bE0 e−jkl' + s
p

n=1

En ejk1,0nl'b (21)

Figure 10. A transmission loss comparison between the 2-D analytical, the 3-D boundary element method and
experimental results for an expansion chamber with l/d=0·205: ——, analytical; – –, 3-D boundary element;
R, experimental.
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(recall that the inlet pressure A is unity). Consider, for example, the extreme frequency of
3200 Hz used in the experiments. The first two values of k1,0n are k1,01 = j146·5 and
k1,02 = j282·8, which produce exponentially decaying terms of e−146·5l' and e−282·8l' in the
summation of equation (21). Thus, even for a short distance l', the non-planar modes
leaving the expansion chamber decay and have a negligible effect on the transmission loss.

For the one-dimensional case, setting p=0 in equations (10)–(13) and (17)–(20) gives
four equations and four unknowns, which can be arranged to yield the classical
transmission loss of a one-dimensional expansion chamber, as

TL=10 log10 $1+ 1
40m−

1
m1

2

sin2 kl%, (22)

where m=(d2/d1)2 is the expansion ratio (see, for example, Davis et al. [1]). Equation (22)
reveals that the transmission loss for a one-dimensional expansion chamber oscillates
between a minimum of zero when kl= qp and a maximum when kl=(2q−1)p/2, where
q=1, 2, . . . , a.

3. BOUNDARY ELEMENT METHOD

In order to determine the multi-dimensional effects on the acoustic performance of
expansion chambers, a three-dimensional direct boundary element method was used. This
method is based on the Helmholtz equation:

92P*+ k2P*=0, (23)

where P=P* ejvt. Given an enclosed smooth surface and two points X and Y, where Y
is on the surface of the model, equation (23) can be written in an integral form as [9]

Figure 11. A transmission loss comparison between the 2-D analytical, the 3-D boundary element method and
experimental results for an expansion chamber with l/d=0·612: ——, analytical; – –, 3-D boundary element;
R, experimental.
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Figure 12. A transmission loss comparison between the 2-D analytical, the 3-D boundary element method and
experimental results for an expansion chamber with l/d=1·024: ——, analytical; – –, 3-D boundary element;
R, experimental.

Figure 13. A transmission loss comparison between the 2-D analytical, the 3-D boundary element method and
experimental results for an expansion chamber with l/d=1·435: ——, analytical; – –, 3-D boundary element;
R, experimental.
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Figure 14. A transmission loss comparison between the 2-D analytical, the 3-D boundary element method and
experimental results for an expansion chamber with l/d=1·843: ——, analytical; – –, 3-D boundary element;
R, experimental.

gS $G(X, Y)
1

1nY
P*(Y)−P*(Y)

1

1nY
G(X, Y)% dSY

=61
2P*(X),
P*(X),

if X is on a smooth surface,
if X is in the interior of the model.

(24)

Here, G(X, Y)= e−jkR/4pR is Green’s free space function and R is the distance between
X and Y. By discretizing the surface into a number of elements, equation (24) may be
rearranged as a system of equations

[A](P*)= [B](1P*/1n). (25)

For each surface element, either P* or 1P*/1n is given in terms of one of the following
boundary conditions:

P*=P�, for specified pressure,

1P*/1n=−jrvV, for specified velocity,

1P*/1n=−jrvP*/Z, for specified impedance.

Solution of equation (25) on the surface reveals the unknown (either P* or 1P*/1n) for
each surface element. Once the surface values are known, equation (25) can be solved for
interior points through direct substitution. A more detailed account of this method can
be found in Seybert and Soenarko [10], Soenarko and Seybert [11] and Ciskowski et al.
[12].

For this study, parabolic quadrilateral and triangular elements were used to discretize
the surface, and a nodal spacing to ensure greater than six nodes per wavelength was
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maintained throughout the frequency range. For the boundary element method,
transmission loss was computed by modeling the acoustic element in an extended
impedance tube set-up similar to the experimental study. The system is driven by an
oscillating piston with specified velocity and an anechoic termination is modelled by setting
the impedance of the outlet equal to the characteristic impedance of the fluid, rc.

4. EXPERIMENTAL APPROACH

The experimental set-up consists of an extended impedance tube configuration, as shown
in Figure 2, where the expansion chambers are placed between a broad-frequency noise
source and an anechoic termination. The two-microphone technique [13, 14] is utilized to
separate incident and reflected waves for calculation of the transmission loss across the
element, with one microphone pair placed before and another one after the expansion
chamber. Although multi-dimensional waves are excited in the expansion chambers, the
impedance tube diameter of 4·859 cm ensures planar propagation at the microphones, with
a cut-off frequency of 4149 Hz for non-symmetric modes. For further details of the
experimental set-up, refer to Selamet et al. [15, 16].

5. RESULTS AND DISCUSSION

To validate the analytical and computational models, an experimental study is
conducted with nine expansion chambers constructed at different lengths as shown in
Table 1. For these nine configurations, the chamber expansion ratio, m, is held constant
while the length to diameter ratio, l/d2, is varied from 0·205 to 3·525.

In Figures 3 and 4 are shown transmission loss comparisons of the one-dimensional
theory of equation (22) with the experimental results for the two extreme cases with the
largest and smallest l/d2 ratios (hereafter the subscript 2 is dropped for convenience). For

Figure 15. A transmission loss comparison between the 2-D analytical, the 3-D boundary element method and
experimental results for an expansion chamber with l/d=2·256: ——, analytical; – –, 3-D boundary element;
R, experimental.



   419

Figure 16. A transmission loss comparison between the 2-D analytical, the 3-D boundary element method and
experimental results for an expansion chamber with l/d=2·666: ——, analytical; – –, 3-D boundary element;
R, experimental.

the long expansion chamber, good agreement is shown in Figure 3 at low frequencies,
whereas at higher frequencies noticeable magnitude differences are observed before the
complete breakdown of the repeating one-dimensional domes. Based on acoustical theory,
equation (3), the first radial (0, 1) cross-mode will propagate in the chamber at a frequency

Figure 17. A transmission loss comparison between the 2-D analytical, the 3-D boundary element method and
experimental results for an expansion chamber with l/d=3·076: ——, analytical; – –, 3-D boundary element;
R, experimental.
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Figure 18. A transmission loss comparison between the 2-D analytical, the 3-D boundary element method and
experimental results for an expansion chamber with l/d=3·525: ——, analytical; – –, 3-D boundary element;
R, experimental.

of 2737 Hz. A final large transmission loss peak near this frequency at approximately
2714 Hz is shown in Figure 3. On the other hand, the short-length chamber of Figure 4
reveals (1) very little similarity between the one-dimensional prediction and the
experimental results; and (2) peaks at a frequency well below the onset of any higher order
modes.

The deviation of the experimental results from the one-dimensional analytical prediction
suggests multi-dimensional wave propagation at frequencies at which, theoretically, only

Figure 19. The predicted number of one-dimensional transmission loss domes versus the l/d ratio: ——,
equation (28); – – –, equation (28) rounded to an integer number of domes.
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Figure 20. Two-dimensional analytical transmission loss predictions for expansion chambers with low length
to diameter ratios: ——, l/d=0·205; · · · ·, l/d=0·3; — —, l/d=0·35; —·—, l/d=0·4; - - - -, l/d=0·45; ,——,,
l/d=0·5; – –, l/d=0·612.

the planar mode should propagate. In the available literature the multi-dimensional waves
have been treated successfully by both finite element and boundary element methods. Some
relevant applications of the former have been illustrated by, for example, Young and
Crocker ([17] for a simple expansion chamber; [18] for exhaust mufflers including
flow-reversing chambers and Helmholtz resonators), and by Sahasrabudhe et al. [19]
for sudden area discontinuities. The present study employs the latter technique, as
discussed in section 3. In terms of this three-dimensional boundary element method, the
pressure fields inside the two extreme expansion chambers have been determined for
several frequencies. In Figures 5 and 6 are shown the internal pressure contours for the
l/d=3·525 chamber at three frequencies of maximum transmission loss and three
frequencies of minimum transmission loss. These figures illustrate that at very low
frequencies (Figures 5(a) and 6(a)), the contours are planar throughout the chamber, as
expected. With increasing frequency, however, some non-planar contours begin to appear
at the area discontinuities, due to the fact that the transition excites higher order radial
modes. When the frequency is below that for which these modes can propagate freely
(Figures 5(b) and 6(b)), the non-planar modes decay exponentially with distance and only
planar behavior is observed away from the area transitions. As the frequency becomes
closer to the propagating or cut-off frequency for the first radial (0, 1) mode in Figure 5(c),
however, the modes do not decay as quickly and the multi-dimensional effects spread
throughout the length of the chamber. Finally, Figure 6(c) shows a complete
multi-dimensional behavior as the cut-off frequency for the first radial mode is exceeded.

Contours for the short l/d=0·205 chamber, shown in Figure 7, illustrate the importance
of the multi-dimensional propagation even at low frequencies. Higher order modes are
excited at the expansion and, due to the short length of the chamber, they do not decay
sufficiently. In effect, this causes a ‘‘radial mode’’ to propagate in the chamber even
through the frequency is almost half that of the cut-off frequency. A comparison between
the two geometries with equal contour strength in Figure 8 at low frequency and in
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Figure 21. The predicted number of one-dimensional transmission loss domes versus the l/d ratio (a
comparison with experiments and other works): ——, equation (28); — —, equation (28) rounded to an integer
number of domes; –·–, equation (26); W, experimental results (present study); q, Sahasrabudhe et al. (FEM);
r, El-Sharkawy and Nayfeh (analytical); e, Ih and Lee (experimental, analytical); w, Craggs (FEM).

Figure 9 at a higher frequency shows why the non-planar behavior is more significant in
the shorter chamber.

The discrepancy between the one-dimensional results and the experiments, along with
the multi-dimensional propagation at low frequency in the l/d=0·205 configuration,
indicates that the diameter of the expansion chamber is not the only parameter affecting

Figure 22. Experimental transmission loss results for an asymmetric expansion chamber with l/d=2·666, inlet
and outlet offsets of 5·1 cm and rotated through 180 degrees; R, experimental.
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the propagation of these non-planar waves and the length of the chamber needs to be taken
into account. To study the length effect, nine expansion chambers listed in Table 1 were
fabricated: the diameter of the chamber was held constant, while the length was varied.
In Figures 10–18 are shown transmission loss comparisons among the experimental results,
the two-dimensional analytical approach, and the three-dimensional boundary element
method. As the l/d ratio of the chamber is decreased in Figures 10–18, the frequency range
over which the repeating one-dimensional domes are observed decreases. This trend was
also observed by Sahasrabudhe et al. [6] in a finite element study of different expansion
chamber geometries. They developed an approximate relationship for the l/d ratio required
to achieve plane wave behavior up to a frequency as

(l/d)qp =2(l/d)(q−1)p −(l/d)(q−2)p , (26)

where qp denotes the frequency kl. The first two l/d ratios are given as (l/d)p =0·65 and
(l/d)2p =1·0.

In Figures 10–18 the one-dimensional repeating dome behavior is shown to
prevail below the onset of the first radial mode (2737 Hz), while no domes extend
beyond that frequency. Rearranging equation (3) yields the number of repeating domes,
kl/p, as

kl
p

Q 2amn

p 0 l
d1, (27)

or

number of domesQ2·440(l/d) (28)

for concentric chambers, which is a relation between the l/d ratio of the chamber and the
number of attenuation domes before higher order modes begin to dominate, as shown in
Figure 19. This equation predicts that geometries with an l/d ratio of less than 0·41 will
have no complete dome. This matches the value given by Ih and Lee [5] for the transition
between the acoustically short and long expansion chambers. Analytical transmission loss
curves for a number of short and single-domed chambers in Figure 20 also support this
value. The predictions obtained by plotting equation (28) and rounding down to a
complete number of domes, as shown in Figure 21, match the experimental results, as well
as the results obtained from other authors, whereas equation (26) offers a reasonable
guidance at low l/d ratios, while deviating slightly at high l/d. Equation (28) also provides
an easier form to work with.

For all nine configurations, there is also a distinct trend in the transmission loss after
the breakdown of one-dimensional propagation. For the cases with an even number of
domes, the transmission loss exhibits a sharp peak, whereas for an odd number there is
a transmission loss dome with a frequency band less than kl/p.

Although the present study concentrates on symmetric chambers, it is appropriate here
to provide a few remarks on the non-symmetric configurations. Eriksson et al. [4, 20, 21]
demonstrate the effect of inlet and outlet orientations on the frequency range over which
the repeating dome behavior is observed. For example, by offsetting the inlet and outlet
ducts from the center and placing them 180 degrees apart, the repeating dome behavior
is observed until the geometry excites the first diametral (1, 0) mode. Similarly, by centering
the inlet and offsetting the outlet, the repeating dome behavior is extented until the second
radial (0, 2) mode propagates. For these non-symmetric configurations, the number of
domes determined by introducing amn , which corresponds to the first higher order mode
excited, into equation (27) may be shown to agree well with the experimental results given
by Eriksson and his coworkers. In Figure 22, for example, are depicted the experimental
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results for a configuration with offset inlet and outlet such that the (1, 0) mode is excited
first. The combination of equation (27) with a10 =1·841 from Table A1 and the l/d ratio
of 2·666 yields three repeating domes, which agrees with the experimental results. A more
thorough investigation of these asymmetric configurations, as well as their design
implications, will be undertaken in the future.

6. CONCLUDING REMARKS

This study has investigated analytically, computationally and experimentally the effect
of chamber length on the non-planar wave propagation in concentric expansion chambers.
Multi-dimensional waves are excited at all frequencies at the area discontinuities of the
chamber, however, for frequencies well below the cut-off frequency of the chamber, the
multi-dimensional waves decay in a short distance and have little effect on the transmission
loss. At higher frequencies approaching that of the first radial mode, however,
multi-dimensional effects begin to dominate, causing the repeating dome behavior of the
expansion chambers to break down. As the concentric expansion chamber length becomes
short with l/dQ 0·41, the repeating dome behavior breaks down altogether, as the length
of the chamber is no longer sufficient for the higher order modes to decay. This resonance
behavior of acoustically short concentric chambers substantially below the cut-off
frequency may, however, be desirable—particularly when coupled with the repeating dome
attenuation of long chambers—for practical designs, as indicated by Eriksson et al. [4].
It is the combination of the length effect with the cut-off frequency that dictates the number
of repeating domes. By taking both of these effects into account, an expression is given
to relate the number of repeating transmission loss domes to the l/d ratio of the chamber,
which may be useful to determine approximately the applicability of the simple
one-dimensional predictions.
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APPENDIX A: THE PRESSURE FIELD

The linearized wave equation for the propagation of acoustical waves is

92P=
1
c2

12P
1t2 , (A1)

where c is the speed of sound in the fluid [22]. For waves travelling in a circular pipe of
radius ri , the solution to equation (A1) is given, in cylindrical co-ordinates [7, 23], by

P(r, u, z, t)= s
a

m=0

s
a

n=0

AmnJm(gi,mnr) ej(vt2 ki ,mnz+mu), (A2)

where m and n designate the diametral and radial mode numbers, Amn is the pressure
coefficient for each mode, v is the angular frequency, Jm is the Bessel function of the first
kind of order m,

k2
i,mn = k2 − g2

i,mn , (A3)

T A1

The roots, amn , of the Bessel function J'm(amn)=0

m n=0 n=1 n=2 n=3 n=4

0 0 3·832 7·016 10·174 13·324
1 1·841 5·331 8·536 11·706 14·864
2 3·054 6·706 9·970 13·170 16·348
3 4·201 8·015 11·346 14·586 17·789
4 5·318 9·282 12·682 15·964 19·196
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in which k=v/c is the planar wavenumber, and, from the radial boundary condition at r= ri ,

gi,mn = amn/ri , (A4)

where amn are the roots of the Bessel function J'm(amn)=0. The first few values of amn are given in
Table A1.

For pipes with circular cross-section, the diametral modes are not excited (assuming axially
symmetric excitation) and can be neglected by setting m=0 in equation (A2). Furthermore,
separating out the planar mode from the radial ones yields the pressure field in the pipe as

P=A0 ej(vt2 kz) + s
a

n=1

AnJ0(gi,0nr) ej(vt2 ki ,0nz). (A5)

APPENDIX B: NOMENCLATURE

A, B, C, D, E, F pressure coefficients
c speed of sound
d diameter
f frequency
G =e−jkR/4pR, Green’s function
j =z−1, imaginary unit
Jm Bessel function of the first kind
k planar wavenumber
ki,mn axial wavenumber
l expansion chamber length; downstream microphone location
m diametral mode number; expansion ratio
n radial mode number; unit outward normal
p truncation terms from infinite summations
P, P* acoustic pressure
q = kl/p, number of domes
r cylindrical co-ordinate; radius
R distance between X and Y
s orthogonal expansion terms
S surface
t time
TL transmission loss
U acoustic velocity
V surface velocity
X interior or surface point
Y surface point
z cylindrical co-ordinate
Z =P/V, surface impedance
amn zeros of J'm(amn)=0
gi,mn radial wavenumber
u cylindrical co-ordinate
r density
v =2pf, angular frequency


